首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
  国内免费   1篇
  2022年   2篇
  2021年   4篇
  2019年   1篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   2篇
  2012年   6篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
21.
Our team in Europe has developed the routine clinical laboratory identification of microorganisms by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). To evaluate the utility of MALDI-TOF MS in tropical Africa in collaboration with local teams, we installed an apparatus in the Hôpital Principal de Dakar (Senegal), performed routine identification of isolates, and confirmed or completed their identification in France. In the case of discordance or a lack of identification, molecular biology was performed. Overall, 153/191 (80.1%) and 174/191 (91.1%) isolates yielded an accurate and concordant identification for the species and genus, respectively, with the 2 different MALDI-TOF MSs in Dakar and Marseille. The 10 most common bacteria, representing 94.2% of all bacteria routinely identified in the laboratory in Dakar (Escherichia coli, Klebsiella pneumoniae, Streptococcus agalactiae, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus haemolyticus, Enterobacter cloacae, Enterococcus faecalis, and Staphylococcus epidermidis) were accurately identified with the MALDI-TOF MS in Dakar. The most frequent misidentification in Dakar was at the species level for Achromobacter xylosoxidans, which was inaccurately identified as Achromobacter denitrificans, and the bacteria absent from the database, such as Exiguobacterium aurientacum or Kytococcus schroeteri, could not be identified. A few difficulties were observed with MALDI-TOF MS for Bacillus sp. or oral streptococci. 16S rRNA sequencing identified a novel bacterium, “Necropsobacter massiliensis.” The robust identification of microorganisms by MALDI-TOF MS in Dakar and Marseille demonstrates that MALDI-TOF MS can be used as a first-line tool in clinical microbiology laboratories in tropical countries.  相似文献   
22.
23.
The soil-related Bacillus and Paenibacillus species have increasingly been implicated in various human diseases. Nevertheless, their identification still poses problems in the clinical microbiology laboratory and, with the exception of Bacillus anthracis and Bacillus cereus, little is known on their pathogenicity for humans. In this study, we evaluated the use of matrix-assisted laser desorption—ionization time of flight mass spectrometry (MALDI-TOF MS) in the identification of clinical isolates of these genera and conducted genotypic and phenotypic analyses to highlight specific virulence properties. Seventy-five clinical isolates were subjected to biochemical and MALDI-TOF MS identification. 16S rDNA sequencing and supplemental tests were used to solve any discrepancies or failures in the identification results. MALDI-TOF MS significantly outperformed classical biochemical testing for correct species identification and no misidentification was obtained. One third of the collected strains belonged to the B. cereus species, but also Bacillus pumilus and Bacillus subtilis were isolated at high rate. Antimicrobial susceptibility testing showed that all the B. cereus, B. licheniformis, B. simplex, B. mycoides, Paenibacillus glucanolyticus and Paenibacillus lautus isolates are resistant to penicillin. The evaluation of toxin/enzyme secretion, toxin-encoding genes, motility, and biofilm formation revealed that B. cereus displays the highest virulence potential. However, although generally considered nonpathogenic, most of the other species were shown to swim, swarm, produce biofilms, and secrete proteases that can have a role in bacterial virulence. In conclusion, MALDI-TOF MS appears useful for fast and accurate identification of Bacillus and Paenibacillus strains whose virulence properties make them of increasing clinical relevance.  相似文献   
24.

Background

Tropheryma whipplei is known as the cause of Whipple''s disease, but it is also an emerging pathogen, detected in stool, that causes various chronic localized infections without histological digestive involvement and is associated with acute infections, including gastroenteritis and bacteremia.

Methods/Principal Findings

We conducted a study in 2008 and 2009 using 497 non-diarrheic and diarrheic stool samples, 370 saliva samples, 454 sera samples and 105 samples obtained from water samples in two rural Sine-Saloum villages (Dielmo and Ndiop) in Senegal. The presence of T. whipplei was investigated by using specific quantitative PCR. Genotyping was performed on positive samples. A serological analysis by western blotting was performed to determine the seroprevalence and to detect seroconversion. Overall, T. whipplei was identified in 31.2% of the stool samples (139/446) and 3.5% of the saliva samples (13/370) obtained from healthy subjects. The carriage in the stool specimens was significantly (p<10−3) higher in children who were between 0 and 4 years old (60/80, 75%) compared to samples obtained from individuals who were between 5 to 10 years old (36/119, 30.2%) or between 11 and 99 years old (43/247, 17.4%). The carriage in the stool was also significantly more common (p = 0.015) in subjects with diarrhea (25/51, 49%). We identified 22 genotypes, 16 of which were new. Only one genotype (#53) was common to both villages. Among the specific genotypes, one (#52) was epidemic in Dielmo (15/28, 53.4%, p<10−3) and another (#49) in Ndiop (27.6%, p = 0.002). The overall seroprevalence was estimated at 72.8% (291/400). Seroconversion was detected in 66.7% (18/27) of children for whom PCR became positive in stools between 2008 and 2009.

Conclusions/Significance

T. whipplei is a common bacterium in the Sine-Saloum area of rural Senegal that is contracted early in childhood. Epidemic genotypes suggest a human transmission of the bacterium.  相似文献   
25.

Background

The identification of mosquito vectors is typically based on morphological characteristics using morphological keys of determination, which requires entomological expertise and training. The use of protein profiling by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), which is increasingly being used for the routine identification of bacteria, has recently emerged for arthropod identification.

Methods

To investigate the usefulness of MALDI-TOF-MS as a mosquito identification tool, we tested protein extracts made from mosquito legs to create a database of reference spectra. The database included a total of 129 laboratory-reared and field-caught mosquito specimens consisting of 20 species, including 4 Aedes spp., 9 Anopheles spp., 4 Culex spp., Lutzia tigripes, Orthopodomyia reunionensis and Mansonia uniformis. For the validation study, blind tests were performed with 76 specimens consisting of 1 to 4 individuals per species. A cluster analysis was carried out using the MALDI-Biotyper and some spectra from all mosquito species tested.

Results

Biomarker mass sets containing 22 and 43 masses have been detected from 100 specimens of the Anopheles, Aedes and Culex species. By carrying out 3 blind tests, we achieved the identification of mosquito vectors at the species level, including the differentiation of An. gambiae complex, which is possible using MALDI-TOF-MS with 1.8 as the cut-off identification score. A cluster analysis performed with all available mosquito species showed that MALDI-Biotyper can distinguish between specimens at the subspecies level, as demonstrated for An gambiae M and S, but this method cannot yet be considered a reliable tool for the phylogenetic study of mosquito species.

Conclusions

We confirmed that even without any specific expertise, MALDI-TOF-MS profiling of mosquito leg protein extracts can be used for the rapid identification of mosquito vectors. Therefore, MALDI-TOF-MS is an alternative, efficient and inexpensive tool that can accurately identify mosquitoes collected in the field during entomological surveys.  相似文献   
26.

Background

Genetic evidence for diversifying selection identified the Merozoite Surface Protein1 block2 (PfMSP1 block2) as a putative target of protective immunity against Plasmodium falciparum. The locus displays three family types and one recombinant type, each with multiple allelic forms differing by single nucleotide polymorphism as well as sequence, copy number and arrangement variation of three amino acid repeats. The family-specific antibody responses observed in endemic settings support immune selection operating at the family level. However, the factors contributing to the large intra-family allelic diversity remain unclear. To address this question, population allelic polymorphism and sequence variant-specific antibody responses were studied in a single Senegalese rural community where malaria transmission is intense and perennial.

Results

Family distribution showed no significant temporal fluctuation over the 10 y period surveyed. Sequencing of 358 PCR fragments identified 126 distinct alleles, including numerous novel alleles in each family and multiple novel alleles of recombinant types. The parasite population consisted in a large number of low frequency alleles, alongside one high-frequency and three intermediate frequency alleles. Population diversity tests supported positive selection at the family level, but showed no significant departure from neutrality when considering intra-family allelic sequence diversity and all families combined. Seroprevalence, analysed using biotinylated peptides displaying numerous sequence variants, was moderate and increased with age. Reactivity profiles were individual-specific, mapped to the family-specific flanking regions and to repeat sequences shared by numerous allelic forms within a family type. Seroreactivity to K1-, Mad20- and R033 families correlated with the relative family genotype distribution within the village. Antibody specificity remained unchanged with cumulated exposure to an increasingly large number of alleles.

Conclusion

The Pfmsp1 block2 locus presents a very large population sequence diversity. The lack of stable acquisition of novel antibody specificities despite exposure to novel allelic forms is reminiscent of clonal imprinting. The locus appears under antibody-mediated diversifying selection in a variable environment that maintains a balance between the various family types without selecting for sequence variant allelic forms. There is no evidence of positive selection for intra-family sequence diversity, consistent with the observed characteristics of the antibody response.  相似文献   
27.

Background

Q fever is a worldwide zoonotic disease caused by Coxiella burnetii. Epidemiologically, animals are considered reservoirs and humans incidental hosts.

Methodology/Principal Findings

We investigated Q fever in rural Senegal. Human samples (e.g., sera, saliva, breast milk, feces) were screened in the generally healthy population of two villages of the Sine-Saloum region. Ticks were collected in four regions. Seroprevalence was studied by immunofluorescence, and all other samples were tested by two qPCR systems for detection of C. burnetii. Positive samples were genotyped (multispacer typing) by amplification and sequencing of three spacers. Strains were isolated by cell culture. We found that the seroprevalence may be as high as 24.5% (59 of 238 studied) in Dielmo village. We identified spontaneous excretion of C. burnetii by humans through faeces and milk. Hard and soft ticks (8 species) were infected in 0–37.6%. We identified three genotypes of C. burnetii. The previously identified genotype 6 was the most common in ticks in all studied regions and the only one found in human samples. Three strains of genotype 6 of C. burnetii were also recovered from soft tick Ornithodoros sonrai. Two other genotypes found in ticks, 35 and 36, were identified for the first time.

Conclusions/Significance

Q fever should be considered a significant public health threat in Senegal. Humans, similar to other mammals, may continuously excrete C. burnetii.  相似文献   
28.

Background

Parasites incur periodic mutations which must ultimately be eliminated to maintain their genetic integrity.

Methods

It is hypothesised that these mutations are eliminated not by the conventional mechanisms of competition between parasites in different hosts but primarily by competition between parasites within the same infection.

Results

This process is enhanced by the production of a large number of parasites within individual infections, and this may significantly contribute to parasitic virulence.

Conclusions

Several features of the most virulent human malaria parasite Plasmodium falciparum can usefully be re-interpreted in this light and lend support to this interpretation. More generally, it constitutes a novel explanation for the evolution of virulence in a wider range of microparasites.  相似文献   
29.
Recent studies in Africa and Asia indicate that different helminthic infections adversely affect the clinical outcome of malaria infections. This suggests that helminths can influence the acquisition of immunity against Plasmodium. Worms could constitute a confounding factor in the assessment of efficacy of malaria-control intervention, including vaccine prototypes in clinical trials. These observations have fundamental and practical consequences; if the deleterious effect of worms on malaria is confirmed, treatment of helminths would offer an affordable, strongly effective and novel means to roll back malaria. With this article, we hope to induce others to conduct similar studies in different regions.  相似文献   
30.
Cell Biology and Toxicology - Autophagy is a mechanism responsible for the degradation of cellular components to maintain their homeostasis. However, autophagy is commonly altered and compromised...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号